
February 2004: Dichotomize Continuous Variables for Odds Ratio 
Analysis on the Basis of the Distribution of the Data, the Variance of 
the Odds Ratio, and the Odds Ratio—in this Order. (New Rule 4.13.) 
 
Introduction 
 
While dichotomization typically leads to loss of information (see Rule 
4.11) there are occasions when dichotomizing a continuous variable makes 
the data more interpretable. The question then comes up, how should the 
data be dichotomized. Some surprising results crop up as will be shown 
below. 
 
Rule of Thumb 
 
Dichotomize continuous variables for odds ratio analysis on the basis of 
the distribution of the data, the variance of the odds ratio, and the odds 
ratio—in this order. 
 
Illustration 
 
Suppose data sets come from two logistic distributions that differ in 
location shift. The data are to be dichotomized and the odds ratio 
calculated. What is the optimum split? Surprisingly, every split produces 
the same odds ratio. However, the variance changes dramatically and, 
hence, the significance of the odds ratio. 
 
Specifically, let X come from a logistic distribution with location 
parameter µ and Y from a logistic distribution with location parameter 
µ+δ. Suppose the cut point is at X=x. Then the logarithm of the odds ratio 
is δ for all values of X. That is, no matter where the cut point is chosen, the 
log odds is the same. This follows directly from the distributions. 
However, the variance of the log odds depends very much on the cut point 
and hence the significance of the log odds.   
 
For example, suppose that 50 observations each are taken from two 
logistic distributions with means µ=0 and δ=0.5. Figure 1 shows the log 
odds ratio, ln(O), for a range of cut points ranging from -4 to +4. 
Superimposed on the  log odds ratio is its standard error. The standard 
error is derived from the usual estimate of the variance, 
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The quantities πij are the proportions that fall into each of the two 
categories below the cut point (j=0), above the cut point (j=1), for samples 
i=1, 2 so that π11+π12=1 and π21+π22=1.  
 

 
 Figure 1. Two samples of 50 observations drawn from logistic 
 distributions with means 0 and 0.5, and standard deviation 1. Cut 
 points range from -2 to 2. The z-statistic is the log of the odds 
 ratio divided by its standard error. 
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Figure 1 indicates that the significance of the odds ratio depends on the cut 
point whereas the odds ratio is unchanged over the whole range of the cut 
points. The figure also indicates that there is a rather narrow range of cut 
points over which the significance of the odds ratio changes less than 5%. 
This range is roughly from -0.6 to 0.1 standard deviations. This is a rather 
narrow range. We explore this approach in the discussion with other 
distributions. 
   
Basis of the rule 
 
As indicated for data from a logistic distribution the variance changes with 
the cut point but not the odds ratio. The importance of the shape of the 
distribution will be explored below. 
 
Discussion and Extensions 
 
In this discussion we discuss two additional scenarios, first a normal 
distribution and then a skewed distribution, the lognormal. 
 
Consider the case of two normal distributions with means 0 and 0.5 and 
equal standard deviations. We assume again that 50 observations are 
drawn and cut points ranging from -2 to +2. Figure 2 presents the picture 
for this situation. The pattern is very similar to that of Figure 1 with the 
exception that the odds ratio actually increases with more extreme cut 
points whereas the significance of the odds ratio decreases. The top line at 
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Y=2.5 is the value of the z statistic for comparing two samples of size 50 
from two normal distributions with means 0, 0.5 and standard deviations 
1. This represents the precision of the sample data when the observations 
are not dichotomized. The loss in precision can be sorted into two 
components then: the loss due to dichotomization and the loss due to 
choice of cut point. Equivalently this could be described in terms of 
additional sample sizes needed due to dichotomization and due to cut 
point. 
 
 

 
 Figure 2. Two samples of 50 observations drawn from logistic 
 distributions with means 0 and 0.5, and standard deviation 1. Cut 
 points range from -2 to 2. The z-statistic is the log of the odds 
 ratio divided by its standard error. 
 
The second situation considered is where the distribution is skewed. For 
illustration we take the two normal distributions of Figure 2 and 
exponentiate them. This produces lognormal distributions with means and 
variances as follows: 
 
 Table 1. Lognormal sampling situation. The pooled standard 
 deviation is the square root of the average variance. 

Sample  Parameters Normal Lognormal 
1 Mean 0 1.65 
 S.D. 1 2.16 
   
2 Mean 0.5 2.72 
 S.D. 1 3.56 
   
Pooled S.D. 1 2.94 
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To make comparisons with the previous situations we cover a range of 
four standard deviations in the lognormal scale. A standard deviation is 
defined as the square root of the average variance, 

)56.316.2(2194.2 22 += . Figure 2 displays the characteristics of this 
configuration. The interval with less than 5% reduction in the maximum Z 
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 Figure 3. Two samples drawn from lognormal distributions 
 as described in Table 1 with standard deviation 2.94. 
 
 

statistic for the logarithm of the odds ratio is now considerably narrower 
than in the first two examples. The actual values are 0.26 and 0.72 
standard deviations—a rather narrow range. The other interesting feature 
in Figure 3 is that in a small range of partitioning the z statistic for the 
odds ratio is approximately equal to the z statistic for the two sample test 
with heterogeneous variances. This occurs at about 0.44 standard 
deviations. 

 
The conclusions are that care must be taken in dichotomizing data in order 
to calculate odds ratios. The shape of the distribution, it variance, and the 
cut point must be taken into account. It appears from these analyses that 
the shape of the distribution is the most critical component. 
 
This work could be extended by considering an ordinal partitioning of the 
data, not just a dichotomy. The ordered categories could be analyzed by a 
non-parametric test such as the Wilcoxon rank sum test. The optimal 
partitioning strategy could be investigated. Most likely there will be less 
loss of information in this case and also greater robustness in the cut 
points.  
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